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Key Points: 16 

• Information on the time sequencing of precipitation rates is successfully extracted from 17 

four soil moisture retrieval datasets.  18 

• This information is of unprecedented accuracy for the L-band retrievals, presumably 19 

because they are sensitive to emissions from deeper in the soil. 20 

• The relative performance amongst the L-band datasets can be explained by known 21 

features of the instruments and algorithms. 22 
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Abstract 26 

 27 

An established methodology for estimating precipitation amounts from satellite-based 28 

soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive 29 

(SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band 30 

product from the Advanced Scatterometer (ASCAT) mission.  The precipitation estimates so 31 

obtained are evaluated against in situ (gauge-based) precipitation observations from across the 32 

globe.  The precipitation estimation skill achieved using the L-band SMAP and SMOS datasets 33 

is higher than that obtained with the C-band product, as might be expected given that L-band is 34 

sensitive to a thicker layer of soil and thereby provides more information on the response of soil 35 

moisture to precipitation.  The square of the correlation coefficient between the SMAP-based 36 

precipitation estimates and the observations (for aggregations to ~100 km and 5 days) is on 37 

average about 0.6 in areas of high rain gauge density.  Satellite missions specifically designed to 38 

monitor soil moisture thus do provide significant information on precipitation variability, 39 

information that could contribute to efforts in global precipitation estimation.   40 

 41 

 42 

Index terms:  43 

1854 Precipitation (3354) 44 

1866 Soil moisture 45 

1855 Remote sensing (1640, 4337) 46 

  47 
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1. Introduction 48 

The potential societal benefits of an accurate estimation of precipitation – its magnitudes 49 

and its variations in time – are immense.  Precipitation data are crucial for crop modeling and 50 

forecasting, water resources planning, soil moisture initialization for weather forecasts and 51 

seasonal forecasts, flood and landslide analysis, and a host of other valuable applications.  52 

Precipitation is indeed the key driver of surface hydrological processes and is an essential link 53 

between the land and atmospheric components of the climate system. 54 

The importance of measuring precipitation accurately has not been lost on the scientific 55 

community.  A number of projects over the years have produced global-scale precipitation data 56 

for scientific and technical applications.  Key datasets are available, for example, from the 57 

National Center for Environmental Prediction [Xie et al. 2007, also 58 

ftp://ftp.cpc.ncep.noaa.gov/precip/cmap/] and the Global Precipitation Climatology Project 59 

[Adler et al. 2003], the latter being sponsored by the Global Climate Research Programme.  To 60 

produce the global-scale gridded precipitation rates, such projects utilize a number of data 61 

sources, including rain gauges, satellite-based precipitation retrievals, and model analysis 62 

products.  Satellite-based estimates of precipitation are indeed becoming more and more 63 

relevant, with valuable data provided by the Tropical Rain Measurement Mission [TRMM, 64 

Huffman et al. 2007] and the follow-on Global Precipitation Mission 65 

(http://www.nasa.gov/mission_pages/GPM/main/index.html). 66 

Advances in technologies notwithstanding, all current precipitation estimation techniques 67 

have limitations.  Rain gauges are generally considered to be the most accurate source of 68 

precipitation data [Huffman et al. 1997], but they represent local measurements and, given issues 69 

of spatial representativeness, are not always easily translated to area-averaged precipitation rates.  70 
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Rain gauges are also absent in many parts of the world.  Satellite-based precipitation rates, while 71 

clearly valuable, are limited by the “snapshot” character of the individual measurements and by 72 

various difficulties in interpreting satellite signals over land [Hou et al. 2014, Kummerow et al. 73 

2015].  Analysis products from atmospheric models, for their part, are subject to the biases 74 

inherent in the underlying models used.  Given such issues, alternative methods of estimating 75 

precipitation could prove valuable.  Indeed, using data from a proven alternative method in 76 

concert with satellite-based precipitation retrievals, rain gauge measurements, and analysis 77 

products, properly taking into account the relative strengths and weaknesses of each method, 78 

could yield a superior global precipitation dataset that could benefit many user applications. 79 

One particularly promising and currently under-utilized data source relevant to 80 

precipitation estimation is soil moisture as measured from space.  The potential for extracting 81 

precipitation information from space-based soil moisture retrievals is illustrated in Fig. 1, which 82 

shows time series of Level 2 passive soil moisture retrievals from the Soil Moisture Active-83 

Passive mission (SMAP; see section 2a below) plotted alongside spatially collocated gauge-84 

based precipitation data at a western U.S. site.  SMAP surface soil moisture values (top ~5 cm of 85 

soil) are represented as red dots, and the precipitation rates, from the Climate Prediction Center 86 

Unified rain gauge dataset (see section 2b), are shown as blue histogram bars.  Soil moisture is 87 

seen to increase at the onset of precipitation (e.g., on days 117, 133, 155, and 184), with larger 88 

increases for larger precipitation rates (compare the increases on days 133 and 155).  89 

Furthermore, following the cessation of rain, soil moisture gradually reduces to a value near 90 

zero.  The overall consistency between the independent soil moisture and precipitation data is 91 

high; the retrievals here do contain useful information on the time sequencing and relative 92 

magnitudes of precipitation events.  93 
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Recognizing this connection, several studies have in fact presented approaches for 94 

utilizing satellite-based soil moisture data to improve existing precipitation datasets [e.g., Crow 95 

et al. 2009, 2011; Pellarin et al. 2008, 2013; Wanders et al. 2014; Zhan et al. 2015].  In the 96 

present study we consider a distinctly different class of algorithm: one that uses soil moisture 97 

retrievals in isolation to compute an independent time series of precipitation for direct 98 

comparison with existing data from more traditional sources (e.g., rain gauges or satellites).  This 99 

use of soil moisture as a virtual rain gauge was pioneered by Brocca et al. [2013], who 100 

developed a specific algorithm, called SM2RAIN, for generating time series of precipitation 101 

rates based on the changes seen in consecutive soil moisture retrievals (see section 2c).  Brocca 102 

et al. [2014] applied this algorithm to Advanced Scatterometer (ASCAT) and Advanced 103 

Microwave Scanning Radiometer – EOS (AMSR-E) soil moisture retrievals and to an early 104 

version of SMOS (Soil Moisture Ocean Salinity) retrievals and found that the resulting 105 

precipitation time series were promisingly realistic. 106 

The launch in 2015 of the SMAP soil moisture satellite and the considerable updates in 107 

the processing of the SMOS products (since the Brocca et al. [2014] study) provides a valuable 108 

opportunity to evaluate this precipitation estimation approach with presumably more accurate 109 

soil moisture retrievals.  SMAP and SMOS are both L-band instruments and thereby extract soil 110 

moisture information from deeper in the soil than C-band instruments such as AMSR-E or 111 

ASCAT (~5 cm versus ~2 cm), allowing for a more complete characterization of how soil 112 

moisture responds to precipitation.  The SMAP mission, in addition, has numerous protocols in 113 

place to reduce noise from radio frequency interference [RFI, Entekhabi et al. 2010].  The 114 

present paper aims to quantify the level of precipitation estimation accuracy achievable using 115 
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these new L-band instruments relative to that achievable with a representative C-band 116 

instrument. 117 

Section 2 describes the datasets used and outlines the SM2RAIN precipitation estimation 118 

algorithm, including special modifications adopted for this study.  Section 3 presents the 119 

accuracies achieved with the L-band and C-band data, and section 4 provides a summary and 120 

further discussion. 121 

 122 

2. Data and Methods 123 

 124 

2.1 Satellite Retrievals 125 

 126 

2.1.1.   SMAP 127 

The SMAP satellite, launched in early 2015, carries an L-band radar and radiometer that 128 

provide global radar backscatter and brightness temperature observations every 2-3 days. The 129 

radar ceased operation on 7 July 2015, but the radiometer continues to operate well. Amongst 130 

other products, SMAP retrieves the soil moisture content of the upper ~5 cm of soil. SMAP was 131 

designed with a sun-synchronous orbit with 6 AM/PM local equatorial overpass time and has a 132 

nominal incidence angle of 40°. 133 

 The specific SMAP data used in this study are the Level 2 retrievals (L2_SM_P) from the 134 

passive radiometer [Entekhabi et al. 2010, Chan and Dunbar 2015].  The passive-based soil 135 

moisture data are provided on a 36 km Earth-fixed grid using the global cylindrical Equal-Area 136 

Scalable Earth Grid Projection Version 2 [EASEv2, Brodzik et al. 2012].  We use in particular 137 

the “beta release” version of these data [O’Neill et al. 2014], the most advanced version available 138 
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to us at the time of this writing.  These data are limited to the descending swaths of the SMAP 139 

data, corresponding to local retrieval times of 6 AM. The retrievals are obtained using the Single 140 

Channel Algorithm [Jackson et al. 2015] and are currently based on V-polarized brightness 141 

temperature observations only.  We excluded coastal pixels from our analysis, and we considered 142 

only those retrievals that have been flagged as “attempted” and “successful”.  To allow greater 143 

global coverage, however, we ignored the flag associated with “recommended quality”.  We also 144 

ignored flags indicating the potential presence of snow or frozen soil; given the time period 145 

considered (May for calibration, and mid-June through mid-October for validation, as discussed 146 

below), this should have minimal impact on our results over most of the globe.   147 

 148 

2.1.2. SMOS-A and SMOS-D   149 

SMOS [Kerr et al. 2010], launched in early November 2009, carries an L-band 150 

radiometer and primarily maps soil moisture and ocean salinity. It observes the Earth in a sun-151 

synchronous orbit at 6 AM/PM local overpass time at incidence angles ranging from 0° to 65°, 152 

and, like SMAP, it has a temporal revisit of 2-3 days and a nominal spatial resolution of about 40 153 

km. For this study we use Level 2 retrieval data from the SMOS SMUDP2 product version v620.  154 

The SMOS retrieval algorithm simultaneously retrieves soil moisture and other variables, such as 155 

the vegetation opacity, by fitting multi-angular brightness temperatures at both horizontal and 156 

vertical polarization with L-band Microwave Emission of the Biosphere [L-MEB, Wigneron et 157 

al. 2007] model simulations. Data were retained only if: (a) all retrieved variables fall within a 158 

realistic range (0-0.8 m3/m3 for soil moisture), (b) the retrieval uncertainty is less than a certain 159 

threshold (0.1 m3/m3 for soil moisture), (c) the RFI-probability for both H-and V-polarization is 160 

less than 0.3, and (d) flags are not raised for high topographic complexity, high urban fraction, 161 
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high open water fraction, sea ice, coastal areas, and high total electron content.  The SMOS data 162 

were regridded from a 12.5 km posting resolution to the 36-km EASEv2 grid; during this 163 

aggregation step, the data were screened for excessive sub-36-km heterogeneity (spatial standard 164 

deviation > 0.5 m3/m3) that may be indicative of RFI or the presence of open water bodies.  165 

We use two distinct SMOS datasets in this study: SMOS-A, consisting of data collected 166 

on ascending passes of the satellite (corresponding to 6AM local time), and SMOS-D, consisting 167 

of data collected on descending passes (corresponding to 6PM local time).  The data are 168 

separated in this way because the timing of the overpass has a potentially significant impact on 169 

retrieval accuracy (see, e.g., Lei et al. [2015]).  By using both SMOS datasets, we should be able 170 

to see if the expected increase in accuracy for SMOS-A translates to a corresponding increase in 171 

the accuracy of precipitation estimation. 172 

 173 

2.1.3.  ASCAT 174 

ASCAT, a real aperture radar operating at C-band, was launched on board the European 175 

Meteorological Operational (MetOp)-B spacecraft in 2012. It observes the Earth in a sun-176 

synchronous orbit at 9:30 AM/PM local overpass time, and it has a temporal revisit of 3 days.  177 

For this study, we took advantage of the availability of an ASCAT dataset already processed by 178 

the SMAP mission for comparison with SMAP morning retrievals.  To construct this dataset, the 179 

9:30 AM (descending) ASCAT L2 soil moisture index posted at 12.5 km resolution was re-180 

gridded to EASEv2 at 36 km by averaging the data using inverse distance weighting for each 181 

day.  ASCAT retrievals were masked out if the probability of snow, frozen ground, wetland, or 182 

significant topography exceeds 50% or if the soil moisture estimation uncertainty due to other 183 

sources exceeds 50%.  The soil moisture index on EASEv2 at 36 km was converted to 184 
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volumetric soil moisture by multiplication with soil porosity, which was also delivered (at 9 km) 185 

as ancillary data [De Lannoy et al. 2014, Mahanama et al. 2015] to the SMAP Level 4 soil 186 

moisture product [Entekhabi et al. 2014].  187 

 188 

2.2. Precipitation Data 189 

 190 

The precipitation data used to evaluate the satellite-based precipitation estimates are from 191 

the CPC (Climate Prediction Center) Unified Gauge-Based Analysis of Global Daily 192 

Precipitation (hereafter CPCU; see 193 

ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/).  For this study, the daily 194 

dataset was converted from its original 0.5°× 0.5° grid to the SMAP EASEv2 grid at 36 km using 195 

areal weighting.   196 

As its name implies, the CPCU data are based on rain gauges only; no satellite-based 197 

rainfall information was used in the construction of the dataset.  In focusing on the gauge-based 198 

data, we implicitly assume that it is the most accurate data available.  Indeed, gauge-based data 199 

are generally used to validate satellite-based precipitation retrievals [Huffman et al. 1997].  The 200 

usefulness of the dataset for validation is nevertheless limited in regions of low rain gauge 201 

density.  Fig. 2 shows the rain gauge density associated with the CPCU data used.  High densities 202 

are seen in much of North America and Europe and in various parts of the other continents.  On 203 

the other hand, low densities appear, for example, in high northern latitudes, in the Amazon, and 204 

in most of Africa.  In such low-density regions, we cannot pretend to know (from the CPCU 205 

dataset or, arguably, from gauge-based precipitation datasets in general) what the true daily 206 

precipitation rates are.  We will refer to the density map in Fig. 2 as we proceed with our 207 
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analyses.  Note that the map uses density units of #gauges/0.5°×0.5°-cell; these densities, with no 208 

change in units, are re-gridded using areal weighting to the finer EASEv2 grid at 36 km for use 209 

in evaluating our precipitation estimation accuracy.  210 

Another important issue regarding the CPCU precipitation data involves the reporting 211 

time for the daily values, which differs by region – some regions may report values for 6AM-212 

6AM local time to the CPCU data collectors, others may report calendar-day values, and so on.  213 

To reduce the impact of the potential inconsistency between the gauge precipitation 214 

measurements and the retrieval-based estimates, we will focus our validation on 5-day 215 

precipitation totals; for each day in the validation period, we compare the estimated total 216 

precipitation from two days prior to two days after the reported date to the corresponding total 217 

from CPCU.  Through such a procedure, of course, some inconsistency may still remain on Day 218 

-2 and Day +2.  Note that this remaining inconsistency can only reduce the computed 219 

precipitation estimation skill levels, so that true skill levels may in fact be higher than those 220 

established here. 221 

Finally, we do not attempt here to separate the observed precipitation rates into rainfall 222 

and snowfall rates.  Again, given the time period considered in this analysis (northern 223 

hemisphere warm season), this should have limited impact on our results over most of the globe. 224 

 225 

2.3. The SM2RAIN Precipitation Estimation Algorithm 226 

 227 

In its basic form, the SM2RAIN algorithm [Brocca et al. 2013] estimates the 228 

precipitation, Pest, for each day between retrieval times t-1 and t using an equation equivalent to: 229 

  Pest  =  α Max{ 0.,   [ (Wt – Wt-1) / ∆t  +  0.5 γ (Wt
b + Wt-1

b) ]  }                          (1) 230 
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where Wt and Wt-1 are consecutive soil moisture retrievals (in volumetric units: m3/m3), ∆t is the 231 

time interval (in days) between them, and α, γ, and b are fitted constants (see below), with γ 232 

having units that convert the second term within the brackets of Eq. (1) to units of m3/m3/day, 233 

and α having units that convert the right-hand-side of Eq. (1) to mm/day.  The term (Wt–Wt-1)/∆t 234 

is positive if soil moisture increases between t-1 and t; this increase is indicative of a 235 

precipitation event and thus adds to the value of Pest.  The term 0.5 γ (Wt
b + Wt-1

b) is included to 236 

represent drainage, which can reduce surface soil moisture even during precipitation events.  237 

Because this drainage is larger for wetter soils, precipitation has to “fight harder” to increase soil 238 

moisture when the soil is wetter; this second term captures this effect.  The presence of this term 239 

allows (1) to estimate nonzero rainfall even when the soil moisture decreases slightly over the 240 

time interval.  (Note that the original equation in Brocca et al. (2013) only included the γ Wt
b 241 

term; here, a second term is included to tie the assumed drainage to both the initial and final soil 242 

moisture states, to approximate an average drainage.) 243 

Of course, any such algorithm has an important limitation:  its ability to capture high 244 

precipitation rates is necessarily limited by the fact that soil moisture cannot exceed porosity, so 245 

that any precipitation water that forms overland flow will necessarily be missed.  Also, the 246 

imprint of a given precipitation volume on a soil moisture retrieval will presumably depend on 247 

how long before the retrieval the precipitation event occurred, and satellite retrievals in any case 248 

contain error that will necessarily be propagated to the precipitation estimates.  Even so, Brocca 249 

et al. [2014] demonstrate a successful application of the algorithm to ASCAT data, and, as will 250 

be shown in the following section, the algorithm performs even better with SMAP and SMOS 251 

data. 252 

 253 
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2.4.  Application of SM2RAIN to SMAP, SMOS, and ASCAT data 254 

 255 

2.4.1. Skill Metric 256 

Our metric for evaluating the algorithm’s ability to estimate precipitation is the square of 257 

the correlation coefficient (r2) between our precipitation estimates from Eq. (1) and 258 

corresponding observed (gauge-based) precipitation rates.  Thus, in this paper, we are evaluating 259 

the estimation of the time sequencing of precipitation and the associated capture of the relative 260 

magnitudes of different storms rather than the absolute magnitudes of the rates, as would be 261 

addressed with a root-mean-square-error metric.  By using an r2 metric, we are in fact evaluating 262 

a quantity that is directly proportional to the actual precipitation rate, which has the distinct 263 

advantage of reducing from 3 to 2 the number of parameters needing calibration in Eq. (1) – 264 

there is no need to calibrate the scale factor α.  When it comes time to producing actual 265 

precipitation estimates, our estimates would need to be scaled accordingly, presumably in a very 266 

simple way using ratios of long-term observed precipitation totals to long-term estimate totals, 267 

either in the region of interest or, for a region without adequate precipitation measurement, in a 268 

region of similar soil texture.  Alternatively, the information contained in the (unscaled) time 269 

sequences could be used directly in conjunction with other precipitation time series (e.g., from 270 

rain gauges, satellite missions focused on rainfall) to produce improved hybrid datasets – a 271 

distinct possibility if the soil moisture-based information is determined to be significant through 272 

the r2 metric. 273 

The satellite soil moisture retrievals are not available on a daily basis; they are often 274 

separated by two or three days.  The effective temporal resolution of the associated SM2RAIN 275 

precipitation estimates is necessarily tied to these retrieval times.  In our analyses, if two 276 
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consecutive retrieval intervals are separated by N days, the resulting SM2RAIN estimate of 277 

precipitation rate from (1) is assigned to each of those N days.  As noted in section 2.2, we 278 

further coarsen the resulting daily time series of estimated precipitation rates to a sequence of 5-279 

day averages, which we compare to corresponding 5-day averages of rain gauge data from the 280 

CPCU dataset. 281 

 282 

2.4.2. Special Modifications of the Basic Algorithm 283 

In practice, different sets of values for the parameters in (1) can be determined for 284 

different regions of the world.  Brocca et al. [2014] indeed use different climatic precipitation 285 

classes to define different parameter sets.  For this study, however, we emphasize simplicity and 286 

robustness; we determine a single set of parameters that can be used everywhere across the 287 

globe. Going to region-specific or hydrological regime-specific parameter sets would 288 

theoretically only increase our computed estimation accuracies. 289 

Using a single set of parameters makes it necessary, when processing the satellite 290 

retrievals, to standardize soil moisture contents by: (i) determining, at each grid element, the 291 

minimum soil moisture obtained over the period of record, and then (ii) subtracting this value 292 

from each retrieval at that grid element.  In conceptual terms, such a calculation has both an 293 

advantage and a disadvantage.  The advantage is that it addresses the fact that different locations 294 

on the globe may (at least for certain retrieval datasets) have different soil moisture minima, as a 295 

function, for example, of soil texture.  The subtraction in effect provides all locations with a 296 

single common baseline – any soil moisture above the baseline, anywhere across the globe, has 297 

the potential to decrease during an interstorm period.  The disadvantage is that many locations 298 

may never experience their true minimum value during the period of record, so that the baseline 299 
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utilized for them is inaccurate.  We proceed with full knowledge of this disadvantage, knowing 300 

that the inaccuracy would eventually be reduced as more satellite data are collected, and 301 

furthermore realizing that the inaccuracy, as it currently exists, can only degrade the performance 302 

of our present calculations. If the precipitation algorithm is shown now to perform well despite 303 

the inaccuracy in the estimated baseline soil moisture, then the inaccuracy can be assumed 304 

unimportant. 305 

 306 

2.4.3. Algorithm Calibration and Validation 307 

For each of the satellite-based soil moisture retrieval datasets (SMAP, SMOS-D, SMOS-308 

A, and ASCAT), we use the period May 5-31, 2015 (a period defined by mutual data 309 

availability) to calibrate the parameters γ and b in (1).  Because we are using an r2 metric, an 310 

arbitrary value for the parameter α is assigned.  Our calibration procedure involves computing 311 

May precipitation time series using (1) for each of a great many potential pairings in the [γ, b] 312 

parameter space and determining the pairing for which the global average of the r2 skill metric 313 

for May (in regions with a rain gauge density of at least 1 gauge per 0.5° grid cell) is the largest.  314 

The calibrated parameter values are then used to estimate precipitation over the period June 20 to 315 

October 15.  (Part of June is skipped in accordance with the European Space Agency’s 316 

recommendation to avoid this particular data period for SMOS; see 317 

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos/news/-/article/smos-318 

level-1-and-2-data-products-short-period-of-degraded-data.) 319 

 320 

3. Results 321 

 322 
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The red dots in Fig. 3a show the time series of SMAP soil moisture retrievals at a 323 

representative location in the central US (a farmland region in southwestern Kansas).  The dark 324 

blue histogram bars in Fig. 3a show the precipitation time series estimated from these retrievals 325 

using (1).  Careful study of these data shows that nonzero precipitation is indeed sometimes 326 

estimated with (1) even during periods of decreasing soil moisture, especially when the initial 327 

soil moisture is high. 328 

Fig. 3b shows, with dark blue hollow histogram bars, the corresponding time series of the 329 

SM2RAIN estimates averaged over 5-day periods.  Plotted as light blue solid histogram bars are 330 

the observed 5-day precipitation totals from the CPCU rain gauge dataset.  The time series show 331 

some similarity; the r2 between the estimated and observed time series in Fig. 3b is 0.55, 332 

indicating some skill in the estimation of precipitation from the soil moisture retrievals alone – 333 

over 50% of the observed precipitation variance is explained by our precipitation estimates. 334 

This basic calculation underlies Figs. 4a-d, which show the global distributions of r2 for 335 

5-day precipitation rates estimated from the SMAP, SMOS-A, SMOS-D, and ASCAT datasets, 336 

respectively.  Note that at some locations (shown in white), r2 values could not be determined 337 

due to limitations in the precipitation data or in the soil moisture retrieval data (e.g., high levels 338 

of RFI).  High r2 values (exceeding 0.6) are seen, for example, in much of the continental U.S. 339 

and Europe and in parts of western Asia, Australia, southern Africa, and South America, 340 

particularly for SMAP.  Lower r2 values are seen elsewhere, but these do not necessarily imply a 341 

deficiency in the technique – rather, they are at least partly indicative of deficiencies in the 342 

precipitation observations (i.e., the validation data) themselves.  This can be seen by comparing 343 

the fields in Fig. 4 with the map of rain gauge density in Fig. 2.  The r2 fields are strongly 344 

determined by rain gauge density, with high r2 values generally found in regions of high density 345 
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and low values in regions of low or zero density.  We can reasonably argue that the true 346 

precipitation is simply not well known in areas with low gauge density and that, if the true 347 

precipitation were in fact known better in these regions, the skill found for the satellite-based 348 

estimates there would be much larger. 349 

We can increase skill levels further by addressing spatial representativeness error.  As 350 

described above, averaging the daily precipitation estimates to 5-day totals allows us to address 351 

some of the representativeness errors associated with inconsistencies in the timing of satellite 352 

overpasses and precipitation rain gauge measurements.  Some representativeness errors, 353 

however, also exist in the spatial domain – rain gauges provide point measurements that may be 354 

inconsistent with the areal averages computed with the estimation algorithm, particularly in areas 355 

of lower gauge density.  Furthermore, while the nominal (3 dB) resolution of, for example, 356 

SMAP and SMOS is ~40 km, the integrated signal in fact comes from a circular area with a 357 

diameter of ~80 km, with less weight in the outer area.  To address (at least to some extent) these 358 

issues, we now compute correlations after aggregating both the retrieval-based precipitation 359 

estimates and the gridded rain gauge measurements to a coarser (~100 km, or about 1°) spatial 360 

scale: over 3×3 blocks of EASEv2 grid cells. 361 

Fig. 5 shows the results for all four retrieval datasets.  The increase in the r2 values is 362 

striking.  As expected, values are still low in areas of low rain gauge density (as presumably they 363 

must be), but r2 values are high across much of North America, Europe, and western Asia and are 364 

also high in many parts of the other continents.  For SMAP, for example, the r2 values in these 365 

regions often exceed 0.7 – over much of the globe (~24% of the globe with a gauge density of at 366 

least 1 gauge per 0.5° grid cell), the SMAP-based estimates “explain” 70% or more of the 367 

variance in the observed 5-day precipitation rates. 368 
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Of particular interest is the relative performance of the four datasets.  Figs. 4 and 5 369 

indicate that of the four retrieval datasets examined, SMAP produces the most accurate 370 

precipitation estimates, followed by SMOS-A, with both performing better than SMOS-D and 371 

ASCAT.  This relative performance is also apparent in the global averages of the skill levels 372 

shown in Fig. 5:  for ~100 km averages, the average r2 skill levels obtained over land areas for 373 

SMAP, SMOS-A, SMOS-D and ASCAT are, respectively, 0.35, 0.29, 0.25, and 0.27.  (Note that 374 

r2 values are not computed in the whited out regions of the maps due to the presence of open 375 

water [exceeding a fraction of 0.05, according to SMAP estimates] or to other data limitations, 376 

such as those associated with RFI for SMOS.  For a consistent comparison, the above global 377 

averages were computed across the same set of grid cells for each satellite dataset – the set of 378 

cells holding a defined value for each dataset.)  Averaging instead over land areas with a gauge 379 

density of 1 gauge or more per 0.5° grid cell naturally gives higher (and more physically 380 

meaningful) averages: 0.58, 0.51, 0.43, and 0.42 for SMAP, SMOS-A, SMOS-D, and ASCAT, 381 

respectively. 382 

We generalize further the relative skill levels of the different datasets and the impact of 383 

rain gauge density on this skill in Fig. 6.  For a given satellite retrieval dataset, and for both the 384 

36-km and aggregated ~100-km resolutions, we compute the average of the precipitation 385 

estimation skill (r2) over all land points having a gauge density within a stated range.  Over 1000 386 

values contribute to each average. 387 

Two results are clearly evident from Fig. 6.  First, for all retrieval datasets, precipitation 388 

estimation skill increases with rain gauge density up to a density of about 1 gauge per 0.5° grid 389 

cell, after which it either grows less quickly with density (SMAP and SMOS-A) or plateaus to a 390 

roughly constant value (SMOS-D and ASCAT).  Clearly, rain gauge density must be considered 391 
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when evaluating the precipitation estimates.  Second, the relative performance of the different 392 

retrieval datasets remains largely as noted above.  SMAP provides the highest skill levels 393 

regardless of gauge density, followed by SMOS-A.  SMOS-D and ASCAT perform similarly, 394 

with ASCAT performing slightly better at low rain gauge densities. 395 

What causes these differences in precipitation estimation skill between the retrieval 396 

datasets?  We can speculate that the differences are related to the inherent noise levels of the 397 

datasets.   All soil moisture retrievals are subject to some noise, and by differencing two 398 

consecutive retrievals in (1), the impact of noise (particularly high frequency noise) on the 399 

accuracy of the precipitation estimates is amplified.  In simple terms, greater amounts of noise 400 

must lead to reduced accuracy in precipitation estimation.  Relative to the SMOS data, the 401 

SMAP data arguably have reduced noise and thus a greater potential for accurate precipitation 402 

estimation, given that the SMOS retrieval algorithm attempts to estimate multiple variables and 403 

given the emphasis on RFI mitigation techniques built into the SMAP system [Entekhabi et al. 404 

2010].  Given such considerations, the higher skill levels seen for SMAP make sense.  It must be 405 

kept in mind, however, that for applications not as affected by high frequency noise, the SMAP 406 

and SMOS datasets have a presumably comparable usefulness.   407 

Of the two SMOS datasets, SMOS-A is expected to be less noisy; Lei et al. [2016] 408 

demonstrate that, for most of the continental United States, SMOS-A retrievals are more accurate 409 

than SMOS-D retrievals.  SMOS-A retrievals may have reduced noise due to the character of the 410 

vertical temperature profile in the soil at the time of the retrievals.  The SMOS-A data were 411 

collected at 6AM, whereas the SMOS-D data were collected at 6PM; various studies [e.g., 412 

O’Neill et al., 2014 (see their Figure 6)] suggest that at 6AM, vertical temperature profiles in the 413 

soil, upon which retrieval algorithms are based, are roughly uniform, whereas at 6PM, strong 414 
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vertical gradients exist that can make soil moisture estimation more difficult.  (Note, however, 415 

that at least one study [Hornbuckle and England, 2005] found the opposite: more vertical 416 

uniformity in the evening.)  Regardless of reason, assuming (following Lei at al. [2015]) that 417 

SMOS-A retrievals are less noisy, the higher precipitation estimation accuracy found for SMOS-418 

A relative to SMOS-D makes sense, though the SMOS-D estimates presumably also incur 419 

reduced r2 values from increased inconsistency with the CPCU gauge measurement times. 420 

Again, both SMAP and SMOS are L-band instruments and thereby see emissions from 421 

deeper into the soil than C-band instruments such as ASCAT (~5 cm vs ~2 cm).  In the context 422 

of characterizing the connection between soil moisture and precipitation, the increased depth is 423 

an advantage, for at least two reasons.  First, the greater depth can distinguish a greater range of 424 

precipitation inputs – while a 1 cm rainfall event and a 2 cm event may both saturate a dry 2 cm 425 

layer (given a 50% porosity), the two events will produce distinctly different levels of soil 426 

moisture increase for a 5 cm layer.  Second, deeper layers are characterized by greater 427 

persistence (e.g., Koster and Suarez [2001]); bare soil evaporation will reduce the average soil 428 

moisture content of a 2 cm layer more quickly than that of a 5 cm layer, and thus the latter can 429 

better retain information about a precipitation event if the event and the subsequent soil moisture 430 

retrieval are separated by, say, a couple of days.  For these reasons, and because L-band 431 

measurements of emissions from the soil are less affected by the presence of vegetation than are 432 

C-band measurements, we expect the L-band instruments to perform better with the precipitation 433 

estimation algorithm.  This expectation is borne out by the comparisons in Figs. 4-6.  434 

At this point, it is worth revisiting the findings of Brocca et al. [2014], who quantified 435 

precipitation estimation skill levels for the C-band instruments of ASCAT and AMSR-E and for 436 

a previous version of the SMOS data, using 5-day and 1°×1° aggregates.  Reprocessing the data 437 
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examined by Brocca et al. [2014] over a time period consistent with that used in this study (June 438 

to October, although for 2010-2011), we find precipitation skill levels for ASCAT (not shown) 439 

that are similar to those shown in Fig. 5d, though with some regional differences.  Interestingly, 440 

the ASCAT skill levels in the Sahel shown by Brocca et al. [2014] for all of 2010-2011 are 441 

better than those for any of the sensors in Fig. 5, perhaps because the full 2010-2011 period 442 

includes the sharp soil moisture transition associated with the Sahelian monsoon, which falls 443 

outside of June-October.  Re-processing the Brocca et al. [2014] ASCAT results for June-444 

October of 2010-2011 (not shown) significantly reduces Sahelian skill levels.  Skill levels 445 

obtained for AMSR-E for June-October of 2010-2011 (not shown) are substantially lower than 446 

those for ASCAT and thus are substantially lower than those shown in Fig. 5 for any of the 447 

sensors. 448 

Curiously, the skill levels found by Brocca et al. [2014] for SMOS are substantially 449 

lower than those presented here.  Presumably this reflects our use here of a more recent version 450 

of the SMOS data (we use SMUDP2 v620, whereas Brocca et al. [2014] used SMUDP2 v5.51) 451 

and more detailed quality control, using recently updated information – an indication that the 452 

reprocessing of such datasets, which is a standard part of such missions, can have a profoundly 453 

positive impact.  Recall that the SMAP data used in this paper are from a beta release, suggesting 454 

the distinct possibility that future incarnations of the SMAP data could provide precipitation 455 

estimates of even higher accuracy. 456 

 457 

4. Summary and Discussion 458 

 459 
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Application of the SM2RAIN algorithm to SMAP soil moisture retrievals produces time 460 

series of precipitation with significant levels of accuracy across much of the globe (Figures 4a 461 

and 5a).  The average of the r2 values for 5-day, ~1°×1° accumulated precipitation estimates 462 

versus corresponding rain gauge observations is about 0.6 in parts of the globe for which the 463 

precipitation measurements used for validation are particularly reliable (Fig. 6).  These skill 464 

levels are indeed unprecedented for soil moisture-based precipitation estimation, being 465 

significantly higher than previously published values [Brocca et al. 2014].  Application of the 466 

algorithm to the latest SMOS dataset (for ascending overpasses) produces slightly less accurate 467 

precipitation rates, and application to ASCAT data produces even lower accuracies.  The relative 468 

levels of skill found for the retrieval datasets make sense in the context of their presumed relative 469 

levels of high frequency noise: SMAP data, due to built-in RFI corrections, are expected to be 470 

less noisy than SMOS data, and the L-band instruments (SMAP and SMOS) are expected to 471 

produce less noise than C-band instruments because they deal better with moderate levels of 472 

vegetation and because they see emissions from deeper in the soil, allowing a better discernment 473 

of different rainfall volumes. 474 

One question, however, not fully addressed here is whether the use of ASCAT ascending 475 

data together with the descending data would have improved the skill levels produced for 476 

ASCAT.  Because the ASCAT retrievals are based on a change detection algorithm, and because 477 

active products are less sensitive to land surface thermal conditions than are passive products, 478 

soil temperature profiles are not a major issue for ASCAT, meaning that (in potential contrast to 479 

SMOS) ascending and descending ASCAT retrievals should have similar quality.  When we 480 

reprocessed the 2010-2011 June-October ASCAT data examined by Brocca et al. [2014], which 481 

do include both ascending and descending data, we found skill levels (not shown) similar to 482 
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those in Fig. 5d, suggesting that use of the additional data would have had little effect.  Still, the 483 

following caveat is worth mentioning: a definitive C-band analysis that includes 2015 ascending 484 

data has not yet been performed.  485 

As illustrated in Fig. 6, rain gauge density is an important consideration in the evaluation 486 

of the precipitation estimates.  Our results indeed suggest that if precipitation rates were better 487 

measured in the ungauged areas, the skill levels obtained there would be higher.  This has 488 

important implications.  The high agreement in well-gauged areas suggests that retrieval-based 489 

precipitation estimates could be used for various applications there in lieu of gauge-based 490 

measurements, assuming enough observational precipitation data are available during a 491 

calibration period to scale the retrieval-based estimates to the proper magnitudes.  If such scaling 492 

could be performed, then the retrieval-based precipitation estimates could themselves be used to 493 

drive, for example, a river routing or crop growth model.  Now consider relatively ungauged 494 

regions (e.g., parts of the Sahel), for which the quality of the precipitation measurements is poor.  495 

Assuming that the retrievals have the same basic accuracy everywhere, and assuming that scaling 496 

factors obtained for well-gauged areas could be transferred to ungauged areas based on soil type 497 

and other considerations, our results suggest that the retrieval-based precipitation estimates could 498 

be applied to great advantage in these areas – the estimates would arguably be better than gauge-499 

based precipitation products.   500 

This is, of course, an ambitious interpretation of the results.  The retrieval-based 501 

precipitation estimates would presumably be poor in tropical forests (e.g., the Amazon) given 502 

known deficiencies of soil moisture retrievals in regions of dense vegetation.  The retrievals may 503 

also be poorer in ungauged regions because model-based surface temperature estimates in these 504 

regions, a critical part of the retrieval algorithms (at least for SMOS and SMAP), may also be 505 
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poor.  Still, given that precipitation is generally more difficult to capture correctly than 506 

temperature, the interpretation is worth exploring with further study. 507 

In any case, as noted in the introduction, perhaps the greatest value of the soil moisture-508 

based precipitation estimates lies in their potential combination with alternative precipitation 509 

estimates to produce a single, superior precipitation dataset.  This potential depends in large part 510 

on the degree to which the soil moisture-based estimates provide unique and complementary 511 

information about the temporal and spatial distributions of precipitation in nature.  Devising an 512 

optimal strategy for combining the soil moisture-based estimates with those from, for example, 513 

gauge networks and satellite-based precipitation retrievals is beyond the scope of this paper; 514 

note, however, that relevant issues have been discussed in several recent studies (e.g., Crow et al. 515 

2011, Pellarin et al. 2013, Ciabatta et al. 2015, Zhan et al. 2015).  Here we can address the 516 

complementarity of the information content by pointing to the strengths and weaknesses of each 517 

estimation approach. 518 

Again, as noted in the introduction, in situ gauge measurements, while providing direct 519 

(and thus high quality) measurements at gauge sites at high time resolution, are point 520 

measurements and do not necessarily capture well the precipitation that falls across large areas.  521 

Gauges are, in any case, sparse or wholly absent in many parts of the globe.  Satellite-based 522 

precipitation measurements (e.g., from GPM) provide high temporal (e.g., half-hourly) and 523 

spatial resolution (e.g., 0.1°) data but to some degree are limited by both the “snapshot” nature of 524 

the different contributing measurements (thereby potentially missing rainfall amounts falling 525 

between the snapshots) and by difficulties, for example, in interpreting the relevant radiances 526 

over land. 527 
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The advantages and disadvantages of the soil moisture-based precipitation estimation 528 

approach are quite different.  Disadvantages include a relatively coarser temporal resolution (2-3 529 

days), as determined by the timespan between soil moisture retrievals.  The estimates also 530 

necessarily miss any rainfall that: (i) runs directly off the surface, e.g. during heavy storms or as 531 

encouraged by complex terrain (though as suggested by Crow et al. [2011], this impact may be 532 

minimal at the spatial scales considered here), or (ii) infiltrates quickly to deeper soil layers or 533 

evaporates quickly from the surface before the next soil moisture retrieval is captured.  In 534 

addition, errors in soil moisture estimation at L-band and C-band are known to be large over 535 

dense vegetation and certain other surface types, meaning that the precipitation estimates in 536 

certain regions will be questionable.  The advantages, however, of the soil moisture-based 537 

approach are potentially quite powerful.  Relative to gauge measurements, the approach provides 538 

areally averaged estimates that span much more of the globe.  Relative to direct satellite-based 539 

precipitation retrievals, the soil moisture-based estimates provide a time-integrated look at what 540 

happened between the soil moisture retrievals (akin to gauge measurements, but for large areas) 541 

– precipitation amounts falling between the “snapshots” of precipitation retrievals can be 542 

captured with the soil moisture-based estimation approach. 543 

We emphasize again that it is presumably by combining approaches, emphasizing the 544 

strength of each one, that an optimal global precipitation dataset can be constructed.  This idea 545 

effectively underlies the aforementioned approaches of Crow et al. [2009, 2011], Pellarin et al. 546 

[2013], Wanders et al. [2014], and Zhan et al. [2015], and it is perhaps the best way to consider 547 

the SM2RAIN estimates examined here – not as a standalone precipitation dataset but as a 548 

potential contributor to overall global precipitation estimation.  The high skill levels shown in 549 
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Figs. 4 through 6, particularly for the L-band sensors, indicate that soil moisture retrievals do 550 

show significant promise for making such contributions. 551 
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Figure Captions 648 

 649 

Figure 1.  SMAP soil moisture retrievals (red dots) at a dry western US location plotted 650 

alongside contemporaneous rain gauge-based precipitation data at the same location (blue 651 

histogram bars).  Soil moisture is in volumetric units, and precipitation is in mm/day.  The 652 

site, in northwestern Nevada, is characterized by scrubby vegetation. 653 

 654 

Figure 2.  Density of rain gauges underlying the CPCU precipitation dataset used to evaluate the 655 

soil moisture retrieval-based precipitation estimates.  Data were provided by CPCU in 656 

units of # gauges / 0.5°×0.5° grid cell; the data were translated to the SMAP EASEv2 grid 657 

at 36 km while retaining the original units. 658 

 659 

Figure 3.  a. Time series of SMAP soil moisture retrievals (red dots) at a representative location 660 

in the central US.  Plotted with dark blue and hollow histogram bars are the daily 661 

precipitation rates estimated from these retrievals with the SM2RAIN algorithm, using (1).  662 

Note that if consecutive retrievals are separated by, say, 3 days, the resulting single 663 

precipitation estimate is assigned to each of the intervening 3 days.  b. 5-day averages of 664 

the SM2RAIN precipitation estimates (dark blue and hollow bars) and corresponding 5-665 

day totals from rain gauges at the same location (light blue solid histogram bars).  For 666 

display purposes, the SM2RAIN estimates are arbitrarily scaled by a constant factor in 667 

each plot. 668 

 669 
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Figure 4.  a. Square of the correlation coefficient (r2) between 5-day precipitation totals from the 670 

CPCU rain gauge network and corresponding SM2RAIN-based precipitation estimates 671 

derived from SMAP (a), SMOS-A (b), SMOS-D (c) and ASCAT (d) soil moisture 672 

retrievals. Gray coloring denotes correlations below 0.1; white coloring denotes locations 673 

for which correlations are undefined due to limitations in data availability.  Considering r2 674 

calculations over the 23 5-day segments of the full validation period (covering mid-June 675 

through mid-October), r2 values exceeding 0.13 are significantly different from zero at the 676 

95% level, and those exceeding 0.23 are significantly different from zero at the 99% level; 677 

note, however, that these significance levels must be adjusted in a very small subset of 678 

locations (which varies with dataset) for which retrievals cover only a fraction of the 679 

validation period. 680 

 681 

Figure 5. As in Fig. 4, but for estimated and measured rain rates spatially aggregated to roughly a 682 

1°×1° grid. 683 

 684 

Figure 6. a. Averages (across the globe, over grid cells holding data for each dataset) of 685 

precipitation estimation skill (r2) at the 36-km resolution for the four different datasets, 686 

binned according to rain gauge density (# gauges / 0.5°×0.5° grid cell, as in Fig. 2).  That 687 

is, an r2 value at a given location is included in an average if the local rain gauge density 688 

falls within the indicated range.  b. Same, but for the aggregated ~100-km resolution 689 

estimates shown in Figure 5.  In the top panel, the number of grid cells contributing to a 690 

given binned average is provided in brackets above the histogram bars. 691 
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